Search

Search for projects by name

WINR logoWINR

Badges

About

WINR is a Layer 3 on Arbitrum, based on the Orbit stack. It is focused on building a decentralized iGaming infrastructure.


Value secured
$7.40 M21.1%
Canonically Bridged
$6.00 M
Externally Bridged
$1.39 M
Natively Minted
$0.00

  • Tokens
  • Daily UOPS
    5.20223%
  • 30D ops count
    7.67 M

  • Type
    Optimium
  • Purposes
    Universal, Gaming
  • Host chain
    Arbitrum One
  • Sequencer failureState validationData availabilityExit windowProposer failure

    Badges

    About

    WINR is a Layer 3 on Arbitrum, based on the Orbit stack. It is focused on building a decentralized iGaming infrastructure.

    Recategorisation

    151d
    16h
    57m
    47s

    The project will be classified as "Other" due to its specific risks that set it apart from the standard classifications.

    The project will move to Others because:

    There are less than 5 external actors that can submit challenges

    Consequence: projects without a sufficiently decentralized set of challengers rely on few entities to safely update the state. A small set of challengers can collude with the proposer to finalize an invalid state, which can cause loss of funds.

    There are less than 5 external actors that can attest data availability

    Consequence: projects without a sufficiently decentralized data availability committee rely on few entities to safely attest data availability on Ethereum. A small set of entities can collude with the proposer to finalize an unavailable state, which can cause loss of funds.

    Learn more about the recategorisation here.

    Value Secured
    Canonical
    External
    Native
    Activity
    WINR
    Ethereum
    Risk summary
    There are 5 additional risks coming from the hostchain Arbitrum One logoArbitrum One
    Fraud proof system is fully deployed but is not yet permissionless as it requires Validators to be whitelisted.
    Risk analysis
    The L3 risks depend on the individual properties of L3 and those of the host chain combined.
    Fraud proof system is fully deployed but is not yet permissionless as it requires Validators to be whitelisted.
    SEQUENCER
    FAILURE
    STATE
    VALIDATION
    DATA
    AVAILABILITY
    EXIT WINDOWPROPOSER
    FAILURE
    Arbitrum One
    L2
    Self sequenceFraud proofs (INT)Onchain7dSelf propose
    WINR
    L3 • Individual
    Self sequenceFraud proofs (INT)External (DAC)NoneSelf propose
    WINR
    L3 • Combined
    Self sequenceFraud proofs (INT)External (DAC)NoneSelf propose
    L2 & L3 individual risks
    Sequencer failureState validationData availabilityExit windowProposer failure
    L3 combined risks
    Sequencer failureState validationData availabilityExit windowProposer failure

    L3 combined risks
    The information below reflects combined L2 & L3 risks.

    Sequencer failure

    Self sequence

    In the event of a sequencer failure, users can force transactions to be included in the project’s chain by sending them to L1. There is a 2d delay on this operation.

    State validation

    Fraud proofs (INT)

    No actor outside of the single Proposer can submit fraud proofs. Interactive proofs (INT) require multiple transactions over time to resolve. The challenge protocol can be subject to delay attacks. There is a 1h challenge period.

    Data availability

    External (DAC)

    Proof construction relies fully on data that is NOT published onchain. There exists a Data Availability Committee (DAC) with a threshold of 1/1 that is tasked with protecting and supplying the data.

    Exit window

    None

    There is no window for users to exit in case of an unwanted regular upgrade since contracts are instantly upgradable.

    Proposer failure

    Self propose

    Anyone can become a Proposer after 19d 3h of inactivity from the currently whitelisted Proposers.

    Technology
    The section considers only the L3 properties. For more details please refer to Arbitrum One logoArbitrum One

    Data is not stored on chain

    Users transactions are not published onchain, but rather sent to external trusted parties, also known as committee members (DAC). Members of the DAC collectively produce a Data Availability Certificate (comprising BLS signatures from a quorum) guaranteeing that the data behind the new transaction batch will be available until the expiry period elapses (currently a minimum of two weeks). This signature is not verified by L1, however external Validators will skip the batch if BLS signature is not valid resulting. This will result in a fraud proof challenge if this batch is included in a consecutive state update. It is assumed that at least one honest DAC member that signed the batch will reveal tx data to the Validators if Sequencer decides to act maliciously and withhold the data. If the Sequencer cannot gather enough signatures from the DAC, it will “fall back to rollup” mode and by posting the full data directly to the L1 chain. The current DAC threshold is 1 out of 1.

    • Funds can be lost if the external data becomes unavailable (CRITICAL).

    • Users can be censored if the committee restricts their access to the external data.

    1. Inside AnyTrust - Arbitrum documentation
    Learn more about the DA layer here: WINR DAC logoWINR DAC
    State validation

    Updates to the system state can be proposed and challenged by a set of whitelisted validators. If a state root passes the challenge period, it is optimistically considered correct and made actionable for withdrawals.


    State root proposals

    Whitelisted validators propose state roots as children of a previous state root. A state root can have multiple conflicting children. This structure forms a graph, and therefore, in the contracts, state roots are referred to as nodes. Each proposal requires a stake, currently set to 0.1 ETH, that can be slashed if the proposal is proven incorrect via a fraud proof. Stakes can be moved from one node to one of its children, either by calling stakeOnExistingNode or stakeOnNewNode. New nodes cannot be created faster than the minimum assertion period by the same validator, currently set to 15m. The oldest unconfirmed node can be confirmed if the challenge period has passed and there are no siblings, and rejected if the parent is not a confirmed node or if the challenge period has passed and no one is staked on it.

    • Funds can be stolen if none of the whitelisted verifiers checks the published state. Fraud proofs assume at least one honest and able validator (CRITICAL).

    1. How is fraud proven - Arbitrum documentation FAQ
    Challenges

    A challenge can be started between two siblings, i.e. two different state roots that share the same parent, by calling the startChallenge function. Validators cannot be in more than one challenge at the same time, meaning that the protocol operates with partial concurrency. Since each challenge lasts 1h, this implies that the protocol can be subject to delay attacks, where a malicious actor can delay withdrawals as long as they are willing to pay the cost of losing their stakes. If the protocol is delayed attacked, the new stake requirement increases exponentially for each challenge period of delay. Challenges are played via a bisection game, where asserter and challenger play together to find the first instruction of disagreement. Such instruction is then executed onchain in the WASM OneStepProver contract to determine the winner, who then gets half of the stake of the loser. As said before, a state root is rejected only when no one left is staked on it. The protocol does not enforces valid bisections, meaning that actors can propose correct initial claim and then provide incorrect midpoints.

    1. Fraud Proof Wars: Arbitrum Classic
    Operator
    The section considers only the L3 properties. For more details please refer to Arbitrum One logoArbitrum One

    The system has a centralized sequencer

    While forcing transaction is open to anyone the system employs a privileged sequencer that has priority for submitting transaction batches and ordering transactions.

    • MEV can be extracted if the operator exploits their centralized position and frontruns user transactions.

    1. Sequencer - Arbitrum documentation

    Users can force any transaction

    Because the state of the system is based on transactions submitted on the underlying host chain and anyone can submit their transactions there it allows the users to circumvent censorship by interacting with the smart contract on the host chain directly. After a delay of 1d in which a Sequencer has failed to include a transaction that was directly posted to the smart contract, it can be forcefully included by anyone on the host chain, which finalizes its ordering.

    1. SequencerInbox.sol - Etherscan source code, forceInclusion function
    2. Sequencer Isn’t Doing Its Job - Arbitrum documentation
    Withdrawals
    The section considers only the L3 properties. For more details please refer to Arbitrum One logoArbitrum One

    Regular exit

    The user initiates the withdrawal by submitting a regular transaction on this chain. When the block containing that transaction is finalized the funds become available for withdrawal on L1. The process of block finalization usually takes several days to complete. Finally the user submits an L1 transaction to claim the funds. This transaction requires a merkle proof.

    1. Transaction lifecycle - Arbitrum documentation
    2. L2 to L1 Messages - Arbitrum documentation
    3. Mainnet for everyone - Arbitrum Blog

    Tradeable Bridge Exit

    When a user initiates a regular withdrawal a third party verifying the chain can offer to buy this withdrawal by paying the user on L1. The user will get the funds immediately, however the third party has to wait for the block to be finalized. This is implemented as a first party functionality inside Arbitrum’s token bridge.

    1. Tradeable Bridge Exits - Arbitrum documentation

    Autonomous exit

    Users can (eventually) exit the system by pushing the transaction on L1 and providing the corresponding state root. The only way to prevent such withdrawal is via an upgrade.

    Other considerations

    EVM compatible smart contracts are supported

    Arbitrum One uses Nitro technology that allows running fraud proofs by executing EVM code on top of WASM.

    • Funds can be lost if there are mistakes in the highly complex Nitro and WASM one-step prover implementation.

    1. Inside Arbitrum Nitro
    Permissions

    The system uses the following set of permissioned addresses:

    Sequencer EOA 1

    Can submit transaction batches or commitments to the SequencerInbox contract on the host chain.

    Validator/Proposer EOA 2

    Can propose new state roots (called nodes) and challenge state roots on the host chain.

    ConduitMultisig2 0x79C2…3F56
    • A Gnosis Safe with 3 / 9 threshold.
    • Can act on behalf of UpgradeExecutor.
    • Can change the configuration of RollupProxy (acting via UpgradeExecutor) - Pause and unpause and set important roles and parameters in the system contracts.
    • Can upgrade the implementation of ChallengeManager, ERC20Inbox, SequencerInbox, ERC20Outbox, UpgradeExecutor, ERC20RollupEventInbox, ERC20Bridge (acting via ProxyAdmin, UpgradeExecutor).
    • Can upgrade the implementation of RollupProxy (acting via UpgradeExecutor).

    Used in:

    A Sequencer - Can submit transaction batches or commitments to the SequencerInbox contract on the host chain.

    A Validator - Can propose new state roots (called nodes) and challenge state roots on the host chain.

    Smart contracts
    A diagram of the smart contract architecture
    A diagram of the smart contract architecture

    The system consists of the following smart contracts on the host chain (Arbitrum One):

    Contract that allows challenging state roots. Can be called through the RollupProxy by Validators or the UpgradeExecutor.

    Can be upgraded by:

    Upgrade delay: No delay

    Implementation used in:

    Central contract for the project’s configuration like its execution logic hash (wasmModuleRoot) and addresses of the other system contracts. Entry point for Proposers creating new Rollup Nodes (state commitments) and Challengers submitting fraud proofs (In the Orbit stack, these two roles are both held by the Validators).

    Can be upgraded by:

    Upgrade delay: No delay

    Implementation used in:

    Facilitates sending L1 to L2 messages like depositing ETH, but does not escrow funds.

    Can be upgraded by:

    Upgrade delay: No delay

    Implementation used in:

    OneStepProverMemory 0x526a…525a

    One of the modular contracts used for the last step of a fraud proof, which is simulated inside a WASM virtual machine.

    Implementation used in:

    ValidatorUtils 0x6c21…867b

    This contract implements view only utilities for validators.

    Implementation used in:

    OneStepProver0 0x800d…6712

    One of the modular contracts used for the last step of a fraud proof, which is simulated inside a WASM virtual machine.

    Implementation used in:

    ProxyAdmin 0x802c…808a

    Can be used to upgrade implementation of ChallengeManager, ERC20Inbox, SequencerInbox, ERC20Outbox, UpgradeExecutor, ERC20RollupEventInbox, ERC20Bridge.

    A sequencer (registered in this contract) can submit transaction batches or commitments here.

    Can be upgraded by:

    Upgrade delay: No delay

    Implementation used in:

    OneStepProofEntry 0xb201…02a8

    One of the modular contracts used for the last step of a fraud proof, which is simulated inside a WASM virtual machine.

    Implementation used in:

    Facilitates L2 to L1 contract calls: Messages initiated from L2 (for example withdrawal messages) eventually resolve in execution on L1.

    Can be upgraded by:

    Upgrade delay: No delay

    Implementation used in:

    OneStepProverHostIo 0xc555…4747

    One of the modular contracts used for the last step of a fraud proof, which is simulated inside a WASM virtual machine.

    Implementation used in:

    • Can act on behalf of ProxyAdmin.
    • Can be used to configure RollupProxy - Pause and unpause and set important roles and parameters in the system contracts.
    • Can be used to upgrade implementation of RollupProxy.
    • Central contract defining the access control permissions for upgrading the system contract implementations.
    Can be upgraded by:

    Upgrade delay: No delay

    Implementation used in:

    OneStepProverMath 0xe870…4446

    One of the modular contracts used for the last step of a fraud proof, which is simulated inside a WASM virtual machine.

    Implementation used in:

    Helper contract sending configuration data over the bridge during the systems initialization.

    Can be upgraded by:

    Upgrade delay: No delay

    Implementation used in:

    Escrow contract for the project’s gas token (can be different from ETH). Keeps a list of allowed Inboxes and Outboxes for canonical bridge messaging. This contract can store any token.

    Can be upgraded by:

    Upgrade delay: No delay

    Implementation used in:

    The current deployment carries some associated risks:

    • Funds can be stolen if a contract receives a malicious code upgrade. There is no delay on code upgrades (CRITICAL).